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We study the total transition probabilities of the tree-level processes of the pair creation and decay of
a massive particle for real Klein-Gordon fields in the spacetime of an infinite straight static cosmic
string. Basing the discussion on cylindrical modes characterized by an approximate radius of closest ap-
proach r.;,, it is possible to approximately localize the non-Minkowskian processes to cylindrical
effective interaction regions around the cosmic string. A physical understanding of the space depen-
dence of the transition probabilities is obtained on the basis of analytic expressions for different energy
domains referring to regions close to and far away from the string. For pair creation the Compton wave-
length A of the created particles proves to be a crucial length scale. For r;, <<\ the creation proba-
bility is insensitive to a variation of r;,. For large r;, it falls off at least exponentially with r;,. This
agrees with an alternative “integrated” approach to localization: the cross section around the cosmic
string is proportional to the Compton wavelength A.. The decay of the massive particle on the other
hand contains processes allowed in Minkowski spacetime and leads to another type of local behavior.

PACS number(s): 98.80.Cq, 04.60.+n, 11.20.Dj

I. INTRODUCTION

Cosmic strings may have been created during the phase
transitions in the early Universe [1]. The spacetime of a
static gauge cosmic string is locally flat everywhere ex-
cept at the string, but possesses a conical global structure
[2]. The simplest possible string is an infinite straight one
which is infinitely thin. Most of the characteristic classi-
cal and quantum effects, which are due to the non-
Minkowskian topology of cosmic strings, already show
up in this case. For the classical ones, which have been
extensively discussed in the literature, we refer to the re-
view articles of Refs. [3] and [4]. From the quantum-
field-theoretical point of view, the nontrivial topology
leads to a polarization of the quantum vacuum. The cor-
responding vacuum expectation value of the stress-
energy-momentum tensor is very similar to the one in the
well-known Casimir effect [5-10]. Also, particle detec-
tors respond differently when they move in the vicinity of
a cosmic string [11]. Furthermore one may note that, be-
cause of the presence of the string, there is a breakdown
of the translational invariance in the plane perpendicular
to the string leading to nonconservation of the related
linear momentum [12-14]. On the other hand,
quantum-field-theoretical processes are by their very na-
ture nonlocal processes. They are sensitive to the pres-
ence of the string and therefore this breakdown of the
global translational invariance has important conse-
quences on the quantum process. One consequence is
that processes of mutual interaction which are not al-
lowed in empty Minkowski spacetime may happen in a
string spacetime [12—14]. In addition, transition proba-
bilities of processes which are allowed in flat spacetime
are expected to be modified, because transitions into new
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momentum channels are possible in the presence of
strings [14].

Although quantum-field-theoretical processes are non-
local, one expects from the physical point of view that the
actual decay or scattering of a particle is effectively a
somewhat localized process, so that transition probabili-
ties should approach the respective Minkowskian values
in the asymptotic regions far away from the string and
should, on the other hand, reflect the presence of the to-
pological influence of the string if the process happens
near the string. For the discussion of the physical
influence of strings in the cosmological context it is im-
portant to obtain an idea of the characteristic range of
influence of a string and the spatial dependence in detail.
This physical problem adds to the usual problem of the
evaluation of the functional structure of transition proba-
bilities, decay rates and so on in the presence of the cosm-
ic string.

In this paper both types of problems are studied for the
case of pair creation and the decay of a massive particle.
The interaction between the massless and massive real
scalar fields is thereby introduced for the pair creation by
a toy Lagrangian with structure analogous to the La-
grangian of quantum electrodynamics (QED). The corre-
sponding QED calculations are structurally similar and
are expected to reflect the same physical conclusions. We
must stress here again that in this paper we are interested
in the effects of the nontrivial topology of the cosmic
strings on quantum processes outside the string’s core.
Therefore we shall not consider any coupling of the exter-
nal quantum fields to the gauge or Higgs fields that make
up the string’s core. For such kinds of interaction we
refer to Ref. [15] and the references therein, where the
scattering of fermions from cosmic strings is studied,
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without however taking into account the conical struc-
ture of the spacetime.

The treatment below is based on the results of a previ-
ous paper [14], where the transition probabilities of tree-
level processes in cosmic-string spacetimes are discussed
in general for Minkowskian and non-Minkowskian pro-
cesses. In Ref. [14] using the property of the localized
absence of cylindrical modes we have shown that it is
possible to localize processes of mutual interaction to cy-
lindrical effective interaction regions around the cosmic
string. In order to discuss the consequences of this on the
space dependence of transition probabilities, particular
processes have to be specified and the respective transi-
tion probabilities have to be worked out in detail. This is
done below for two important process which show typical
differences from the physical point of view.

In Sec. II we fix the notation, characterize the pro-
cedure, and summarize the main results of Ref. [14].
The mathematical treatment and the physical results de-
pend crucially on whether the measures of the momenta
in the plane perpendicular to the string satisfy the trian-
gle inequalities or not. The respective characterization
for three types of tree-level processes is given in Sec. III.
In Sec. IV we study the total transition probability for
pair creation and give analytic expressions in the low-
and high-energy limit in regions far away from and close
to the string. Alternative approaches support the physi-
cal discussion of the localization. We complete the dis-
cussion in Sec. IV by studying the process of the decay of
a massive particle with regard to the same questions. In
this case special attention is given to the decay channels
which satisfy the triangle inequalities.

II. BASIC FORMULAS

The metric for an infinite straight, static, gauge cosmic
string located at the z axis is [2]

ds’=dt*—dz’—dr*—b*%d¢*, (2.1)

where 0=¢@ <2m,0<r < o, and z, E(— o0, + o) while
the constant b €(0,1]. For realistic cosmic strings of
grand-unified-theory (GUT) scale, called GUT cosmic
strings, the relevant values of b are (1-b)=107° << 1.
In the limit of b =1 we have the Minkowski spacetime in
polar coordinates. We use throughout this paper units
where fi=c=1.

Let ¢ and ¢ be Klein-Gordon scalar fields in the space-
time represented by (2.1) which are mutually interacting
via the interaction Lagrangian density

L,;=—Aopy?, 2.2)

where A is a coupling constant with dimension of mass.
The interaction (2.2) belongs to the type of interactions
that we have studied in Ref. [14], hereafter called paper I.
In the present work we will apply the results of paper I to
the processes of pair creation and decay of a massive par-
ticle. To fix the notation and simplify the reference we
summarize below the main results which are used in the
following sections. For details the reader is referred to
paper I.

A. Particle states

In our discussion we will mainly use particle states
[1,¢) with fixed z momentum «, z angular momentum
Ib~!, and measure of the x —y momentum ¢. The con-
struction of such states is based on the complete set of cy-
lindrical mode solutions u ; of the field equations

Uggi=u;=(2b)"eiiley, (erre T 23

Here J (z) are Bessel functions, while
Ej=(§2+xz+m2)”2 is the energy, and m is the mass of a
particle. j denotes the collective quantum label
Jj={K,1,5} with |€EZ,kE(— o0, + o), and £E(0, + o).

The cylindrical modes u; in (2.3) are normalized to a
radial ingoing and an equal radial outgoing flow of one
particle per unit time, per unit z length of a cylindrical
surface at radial infinity. For sufficiently large radial dis-
tances » >>|l| /(b{), the particle density is in the average
equal to E; /(wbr{) independent of /. For physical inter-
pretations, compare paper I for a configuration of classi-
cal particles which represent the classical counterpart of
the quantum modes u;.

An important property of the u; modes is their local-
ized absence: the probability of finding the particle in ra-
dial distances smaller than the classical radius of closest
approach 7. (x,1,E)=|1|/(b), is very small and de-
creases rapidly as |/| increases.

B. Total transition probabilities

The processes with which we will deal in this paper are
transitions from a one-particle state to a two-particle one.
Let j,={k\,11,&,},j,=1{Ky1,,{,} be the quantum num-
bers in the final state and j={«,/,{} in the initial state
while m,m,,m and E,E,,E are their corresponding
masses and energies. If the final particles are not identi-
cal then the corresponding total probability, within an
infinite time interval T and infinite z length L, is

L _ A7 | TL
w(K,l,§):=w(1)=TZ— a fd§1d§2§1§22122.
(2.4)
Here
. S(K_KI—K2)8(E_E1—E2)
3,= [drdxk, E.L,
4H(E—E,—5))
= > 2 22 2.5
e , (2.5)
where H is the step function and
s=[E2=(+E)NE— & —6)) 2.6)
with
E=g+m? Fi=g+mi, Bi=G+mi. @7

In Minkowski spacetime the x —y momentum vectors
form a triangle. Accordingly their measures satisfy the
triangle inequalities
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16, —&al <E<&1+8, - (2.8)

In cosmic-string spacetimes processes without x—y
momentum conservation, called non-Minkowskian pro-
cesses, may happen. Although now their measures may
in particular cases still satisfy the triangle inequality (2.8),

in general this will not be the case. Mathematically the
processes obeying and, respectively, not obeying Eq. (2.8)
must be treated separately. Note that the first case may
comprise Minkowskian and non-Minkowskian processes.
The physical results will reflect these distinctions.

If (2.8) is not satisfied, we find, for X, of Eq. (2.4),

]
sin(m/b)e "1 e N i §>6t6,
s,= {[sin(w/b)—Gle ""F if &> 46, 2.9)
[sin(w/b)—Gle "VF if £,> E+¢E,
where
F= coth(w /b )sin(7/b)
167*A [sinhX(w /b)+sinX(w/b)] 010
G= 1 sin[(2]I|+1)m/b] _ sin[(2]I|=1)7/b]
" 2cosh(w/b) o 2llI—Dw/b o2l 1w/b
and
|gi+&3 ¢ . : : —
coshw=T, 16, sinhw =&, sinhw, =§6 | sinhw, =:2A . (2.11
152
.
On the other hand =, turns out to be infinite in the  tails. ‘
case where the triangle inequalities (2.8) are satisfied. The formal equality
This reflects the presence of Minkowskian processes. To , ®
normalize the result, we confine the system within a wik,l',§)= 21 dw(r;8,x) , (2.15)
=

cylinder of radius R — o with the axis of symmetry coin-
ciding with the cosmic string and find that

4;‘};’; if 16 —6l <E<E+Es

where y is some dimensionless proportionality factor
which is left unspecified by our normalization procedure.
In Eq. (2.12), A is defined as

2=

(2.12)

Gi+6-¢
266,

If the final particles are identical then an additional mul-
tiplicative factor 1 is to be understood in Eq. (2.4).

2A:=¢,6,sin6, cosf= (2.13)

C. Localization
The quantity dw(r;;,«), defined as
Sw(r;é,k):=bslw(k,1,§)—w(k, I+ 1,§)],=,Ib§8r1 R

(2.14)

can be approximately interpreted as the average probabil-
ity that the transition of the initial particle with quantum
number {«,l,{} to a two-particle state happens within
the region r&(r,r,+8r;) where r,~|I|/(b) and
8r;~1/(b§). This interpretation is based on the observa-
tion that the modes (2.3) representing the initial states
[14¢) and |1, ;) are essentially different only within
the region (r;,r,+8r;). Compare paper I for further de-

gives, via the dependence of r;, a rough quantitative esti-
mate for the r dependence of the local distribution of the
transition probabilities w(«k,!’,§).

D. Cross sections

The usual definition of cross sections relies on the
use of particle states which behave asymptotically as
plane waves. The total transition probability
w(p):=w(1,—2), from such a plane-wave initial state
|1, ), which is labeled by the asymptotic momentum p
and is normalized (in the in region) to a particle density
(87°b) ™1, is related to the total transition probabilities
w(k,l,&) by the simple relation

+

8173Ej I=2—oa w(k,l1,8) .

Here p, =k, §*=p}+p}, and E;=(m 242412,
For processes that are forbidden in Minkowski space-

time, the “target” or the ‘““scatterer” is clearly the cosmic

string. Furthermore, since the incoming flux which cor-

responds to the state |1 ) is (87°b)"'({/E;), the cross

section o(p) per unit length around the string is defined

as

w(p)= (2.16)

w(p)
TL(87°b)" (5 /E;)

=:¥ 0,(kE) .
1

o(p)= - EQ wir,1,8)
1

¢ TL
2.17)
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Equation (2.16) is also the defining relation for the partial
cross sections o,(k,{).

The above definition of cross section is not applicable
in the case where the realization of the process is not at-
tributed to the cosmic string alone. The reason is that
now the number of “scatterers” is not one (i.e., only the
cosmic string), as above. The definition of a cross section
is not straightforward in this case since the specification

of the density of scatterers is not obvious.

III. TYPES OF TREE-LEVEL PROCESSES

In this and a subsequent paper we will study the fol-
lowing tree-level processes of the interaction (2.2), which
are transitions from a one-particle state to a two-particle
one:

Pair creation (PC): [19) —[1¥1Y), {m®m¥}={0,M},

Decay (D) [19) |14 1%), {m#,m*}=(M,0] ,

Bremsstrahlung (BS): |1}-”>—>{1f11}52), {fm®,m¥={0,M]} ,

Approximate BS(=~BS): [1})—[1¥1¢)

Here the indices ¢, are used to denote quantities refer-
ring to the fields ¢ and 1, respectively.

In the case of the PC and BS processes, the interaction
Lagrangian density is given by Eq. (2.2) with m?=0,
mY=M. It is similar (but of course, not identical) to the
quantum electrodynamical one Lopp= —eyt A 2
Parts of the respective calculations can easily be tran-
scribed. In Lggp, the coupling constant e is the charge
of the electron, 1 is the fermionic field of mass M, A4 u is
the massless electromagnetic field, and y* are the Dirac
matrices. The “mapping” of our scalar interaction La-
grangian to the QED one is given by ¢— 4, ¥—1, and
A/2M —e. However differences should be taken into ac-
count. For example, the spin-1 photon field 4, has two

m
polarization states in contrast with its scalar counterpart

é.

The study of the processes above covers essentially all
the physical characteristics which are to be expected for
transitions from a one-particle state with («,/,§) to a
two-particle one with («y,/,§,) and (k,,/,,5,). This be-
comes evident if one considers the space of (§,§,) pairs
in which the momentum quantum numbers §, and §, can
be combined according to the restrictions discussed
below which are relevant for a given value of § and a par-
ticular physical process. Figure 1 shows this scaled §,-§,
plane.

In a cosmic-string spacetime all possible transitions are
restricted by the energy and the z-momentum conserva-
tion [see Eq. (2.5)] which amount in our case to the condi-
tion

E>E+E, . 3.1)

In Fig. 1 we have plotted the curves f’—’fl—l—é‘\z for the
PC, D, and BS processes which differ according to the
mass values of the particles involved. Processes which are
allowed according to the condition (3.1) are restricted to
the regions between the axes and below the correspond-
ing curves.

As stressed above, the mathematical treatment and the
physical results depend crucially on whether or not the §
quantum numbers satisfy the triangle inequalities (2.8).

(mém¥)y={u,M}, u—0".

f

Processes that satisfy (2.8), as the Minkowskian processes
necessarily do, are located in the hatched region in Fig. 1.

D processes can happen with conservation of the x-y
momenta. Accordingly the allowed region consists partly
of a region where the triangle inequalities hold. Note
that the points there may refer also to processes with
momentum measures which satisfy the triangle inequali-
ties (2.8) but have nevertheless no conservation of the x-y
momenta, because the respective vectors do not form a
triangle. For D processes there are, in addition, regions
allowed for which Eq. (2.8) does not hold. The PC, BS,
and = BS processes all take place with momentum non-
conservation since for all of them we have {>§,+¢, and
according violation of Eq. (2.8). This can be seen from
Fig. 1 or directly from eq. (3.1). For later reference we
note that, although they are somewhat similar to the PC
processes, the BS processes include processes which come
arbitrarily close to the point ({,=0, {;=¢) which lies on
the separation line to the triangle inequality satisfying

5

g
14 ) —
1.2
1.0
08
06
0.4
02

10 15 C

FIG. 1. The allowed region of §,§,,6, parameters for the pair
creation (PC), bremsstrahlung (BS), and the decay process (D) is
the area between the axes and below the respective curves. The
plotted curves refer to the masses (PC: m¥=0.25(), (BS:
m?¥=3£), (D: m?=1.4£). In the hatched region the { parame-
ters satisfy the triangle inequalities (2.8).
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cases. In the approximate bremsstrahlung process
(~BS) this point is avoided in introducing a small mass

u for the ‘“radiated” away ¢ particle. In Fig. 1 the

respective curve would agree with the BS curve except
near §,~0, where it reaches the §; axis at a point below
&,=¢. All these characteristic properties of the different
processes will have consequences when working out and
discussing the total transition probabilities.

In place of &;,&, we introduce for technical reasons the
u,v variables via

u=(82+)/8, v=(8-6/8. (3.2)

In terms of these variables the characteristic s function of
Eq. (2.6) reads

s=(E+m?—m?+m3)?
—4m%m§+2(m%—m%)§2v

+&2 =284+ mPu , (3.3)

where m is the mass of the initial-particle and m,m, the
mass of the final-particle states. For the PC, D, BS, and
~BS processes the corresponding s functions are

J

1107

spe:=EH1—2u +v?)—4aM??
spr=(CH+MHE+m?—2uf) +v’Et, a4
spe:=EH1—2u +v?)—2M2 X (u—v) , '

S _ps:=5ps — 20 [(14+0)E2+2M?] .

For later use, let us note that Egs. (3.1) and (3.2) imply
the relations

$s>0, |v|<u. (3.5)

IV. PAIR CREATION
A. Total transition probabilities

For the PC, BS, and =BS processes the triangle ine-
qualities (2.8) are not satisfied. Using the appropriate for-
mulas of the previous sections, we find that for all these
processes the total transition probability w(j) can be
written in terms of the u,v variables in the form

w(i)= AZsinX(w/b)
J 167b
where, for each process, the s function has to be chosen

appropriately from the expressions listed in Eq. (3.4),
while

LTI,(s) 4.1)

coth(w /b)[exp(—2|l|w, /b)+exp(—2|l|w,/b)]H(s)

I,(s):=f01du J!av

with
1+v
V2u+tv)’

1—v

coshw, = =)

, coshw,=

For the pair-creation process an additional multiplicative
factor (1) is to be understood in Eq. (4.1), because the
created particles are identical. Note that because of the
factor sin®(7/b), the total probability vanishes when the
cosmic-string parameter b~ !=n EN.

In the following we will deal with the pair-creation
process while the bremsstrahlung process will be studied
in a subsequent paper.

Pair creation is a process that cannot happen in empty
Minkowski space. The presence of a string disturbs the
Minkowski space in such a way that there is now a well-
defined linelike center-breaking Lorentz symmetry,
whereas spacetime remains locally flat outside the string.
The first fact has the consequence that pair creation as a
nonlocal quantum-mechanical process is now allowed.
Stressing on the other hand the classical traits, one may
imagine this process as a somewhat localized decay of a
massless particle into two massive ones. The probability
for this localized decay to occur should vary with the dis-
tance from the string. Although our scheme is based as
usual on transitions between quantum states which cover
nearly the whole space, a physical understanding of the
space dependence of the decay process can be obtained.
For this we will refer to the discussion in paper I and

[sinh®(w /b)+sin®(7/b))(1—2u +v2)Vs

coshw =

(4.2)

1—u

Vai—p?

[

study the total transition probabilities as well as the local-
ized transition probability in Sec. II.

In general the integral of Eq. (4.2) cannot be calculated
analytically. To do so we have to restrict to limiting
cases. Thereby, instead of describing the state of the de-
caying particles by the z angular momentum quantum la-
bel [ €EZ, we use the discrete radius of closest approach

]

min bg ’
together with the z momentum «, and the measure of the
x-y momentum &. The interior of the cylinder r Sr;, is
the region of localized absence of the decaying particles.
In the following we consider decaying massless particle
modes in the limit of low and high energies for small and
large values of r;,. Although the equations below are
valid for arbitrary values k of the z momentum of the
massless particles, we refer in the discussion to the case
k=0 so that { represents the energy of the decaying par-
ticles.

(4.4)

B. Low-energy behavior

In the low-energy limit the energy { of the decaying
particles has values close to the mass threshold {=2M,



1108 AUDRETSCH, ECONOMOU, AND TSOUBELIS 45

fixed by the mass M of the produced massive particles.
For this case Harari and Skarzhinsky have been able to
work out in Refs. [12] and [13] the integrals in (4.2)
J

wpc(k,1,8) _
LT

A * V2w sin(m/b) | 2M
M 47’b g

analytically. In accordance with their results we obtain
the following expression for the total transition probabili-
ty for {=2M:

(1l+2)/6+372

C[1+(I|+1/b)IT[1+(1/b)]
L[5/72+11+2/b)]

(4.5)

Introducing the Compton wavelength A-=M ~! of the decay products and using Eq. (4.4), we may replace in this limit

the angular momentum quantum label / according to

Il_\ . 2rmin
b Ac

(4.6)

Equation (4.5) then shows that for states with a radius of closest approach r_;, which is smaller than the Compton
wavelength (r,;, <<A(), the total transition probability wpc approaches a value which is independent of 7 ;

A

2
V2 sin®(w/b)
2M

4mb

Wpc (K, > )
LT

_2M

=7

—>

On the other hand, for states with large r ;, (7., >>A,),
we obtain from (4.5) that wpe falls off faster than ex-
ponentially with increasing r_;,. We will interpret these
results below.

C. High-energy behavior

To begin with, we discuss states with small r_;,. In
this case we can treat the total probabilities for two
different high-energy domains. From Eq. (4.1) we find,
using Eq. (A10) with (A7) and (A12) of the Appendix,
that without any restriction of the value of the string pa-
rameter b we have in the ultrahigh-energy domain

1

> — 4.8
2M 7 blsin(7w/b)| “8)
approximately
wPC(K7rmin’§)
LT
NN i 2
= A 1—3gp—2 4 _ min
247% | 2M m Ac 0 AL
4.9)

This means that for r;, <<A. the transition probability
becomes again independent of r_;, and furthermore also
of b and of the energy §.

If one specifies the string parameter b, additional infor-
mation can be obtained. For the GUT cosmic string with
b~1 and therefore 1<<(1—b)"!, the right-hand side
(RHS) of Eq. (4.8) becomes 7 '(1—b)~'. For such
values of b we can in addition to the domain (4.8) treat
the less-high-energy domain

1<<—£—<< 1

o S ai=p) (4.10)

Using in (4.1) Eq. (A10) with (A8) and (A13) of the Ap-
pendix we now obtain

2/b+3/2

C[1+(1/b)]
~2M . 4.7
[5/2+(2/b)] ’ 5 w7
I
2 2
wPC(K’rminrg) — (l_b)z _A'_ £
LT 840 |2M | | M
2
Tmb 7 min min
ol il iy wall A s
(4.11)

Again the transition probability turns out to be indepen-
dent of r_;, for r;, <<A.. But for this energy domain it
becomes proportional to (1—5b)? and (/M ).

To complete the high-energy discussion, we turn to de-
caying states with a large radius of closest approach r;,.
As shown in the Appendix, for high energies, the main
contribution to the total probability comes from process-
es for which the quantities w, and w, of Eq. (4.3) satisfy

wlzwzz%<<l . (4.12)
4
Returning to (4.2), this implies that wpc shows an ex-
ponential fall off with r_;, /A for increasing r;, >>Ac.

Taking the results together, we find for high energies of
the pair-producing massless particles, as well as for low
energies near the mass threshold, a similar dependence of
the decay probability on the radius of closest approach
Fmin Of the decaying state: For r_; smaller than the
Compton wavelength of the created massive particles
(Fmin <<A.), the creation probability is insensitive to a
variation of r;,. For large r; >>A it falls off exponen-
tially, or even faster, with r ;.

D. Localization

To interpret this, we refer to the suggestive picture of
the localized decay of classical particles and take into ac-
count the result of paper I that there is an effective in-
teraction region around the cosmic string. Because of the
phenomenon of localized absence, this lies for a particu-
lar quantum state outside a cylinder around the cosmic
string with radius r_;, which is also essentially the radius
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of closest approach to the string for the decaying parti- 0.040% [(L)zLTMr Swir,TN)
cles. Assuming that in a string spacetime the non- ’ 2M or
Minkowskian decay of the massless particles is induced 0035 b

most effectively if these particles are as close as possible '

to the string, then, for given impact parameter a, these 0030 +

decays are most likely to happen for particles near the

cylinder of radius r_;, (compare the localization discus- 0025

sion in paper I). But it is important that the resulting

creation probability depends, in addition, on the Comp- 0.020

ton wavelength of the created particles which represents

an “extension” of these particles. For A.>>r_; , the 0015 |

produced particles, which before their creation can be

considered as virtual pairs, clearly “extend” over the 0010

point » =0 where the string is localized. As long as this is

the case, the decay probability remains insensitive to a 0005

change of r_;, (meaning a change of the radius of the

main decay region). 0«0000 ’ 2 Mr

On the other hand, for r_;, >>A,, the produced parti-
cles do not extend up to the string at the moment of their
production. In this case the actual place of the produc-
tion becomes important and the decay probability de-
creases exponentially with the distance from the string.
To support this interpretation, we turn to a discussion of
the localization based on the Eq. (2.14).

FIG. 2. The local distribution of the pair-creation probabili-
ty.

for which the total probability was obtained as well.
For distances r; from the string which are smaller than
the Compton wavelength A. of the created particles
The quantity Swpc(7;;8,k) of Eq. (2.14) can be ob- (r; <<A¢), we find that Eq. (2.14), using Egs. (4.1), (4.9),
tained in the limiting case of the two high-energy regions and (4.11), gives

E. Second approach to localization

J

2
L _)\'_ M for _b£>>__.l___ ,
Swpe(rEx) | 87 |2M 2M " |sin(7/b)|
e b ) (4.13)
LTbér, 1=bPr | A | & & 1 ’
—= T f —_
80 |2m | a0 T o <Ta=s)

This is constant for fixed energy § and string parameter b. As compared with the constancy in the ultrahigh-energy
domain (first equation), there is in the less-high-energy domain (second equation) an increase with &2 and a (1—b)?
dependence. The result (4.13) shows that for fixed energy every thin cylindrical ring with thickness 87, =(5£)™! con-
tributes with the same amount to the creation probability as long as the created particles have an extension A, overlap-
ping the string. The localized probability per cylindrical ring is constant.

For regions not so close to the string we obtain a numerical result which is the smoothed out curve of Fig. 2. It refers
to a fixed energy & of the massless particles with M /£=0.005 and b=0.8. The figure shows that for increasing distance
r from the string the contribution of a cylindrical ring to the total transition probability rapidly decreases. For r; >>A.
there is essentially no contribution, meaning that no pair creation is happening in these regions. These results reflect
the interpretation given above.

F. Cross section

We finally turn to an independent approach to localization and discuss pair creation for a differently prepared initial
state of massless particles. For an ingoing plane wave with momentum p, the cross section per unit z length gives a
measure of the total extension of the effective interaction region. Using Egs. (2.17), (4.1) and Eqgs. (A16), (A17) of the
Appendix we find that

2
1 A | bsE 1
1927 |28 | M ©F 201 7 Tsmta /b))
Upc(p)——— 2 2 2 (414)
M_I:_ll.)_ _i\_ _Q L fOl' 1<<__§__<<_1__ ,
17920 |2m | | M | M M " (1—b)
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where {*=p’+p’. In the limit of GUT cosmic strings
this result agrees with the one of Harari and Skarzhinsky
in Ref. [13] apart from an additional factor 87* which ap-
pears in (4.14).

In the ultrahigh-energy limit, the op(p) turns out to
be proportional to the Compton wavelength. In the less-
high-energy limit we find in addition again the typical
dependence on (1—5)? and £%. Note that this conclusion
leads to an interaction region which agrees with the one
discussed in the previous subsections.

V. DECAY OF A MASSIVE PARTICLE

We turn to a physically different situation and consider
the decay process D of Sec. III, an example of a process
which is allowed in Minkowski spacetime.

As can be readily seen from Fig. 1, the total probability
wp of the decay process of Sec. III contains processes
which violate the triangle inequalities (2.8), and others
which do not. We will restrict ourselves here to the con-
tribution w{) of the latter type of processes, which we
will call type () process. With Egs. (2.4)-(2.7), (2.12),
and (2.13) we find that in terms of the u,v variables of Eq.
(3.2), the w¥ is

oy MTL byR §

(1)
( A~
O TR an? of
Er¢ alv) 1
X d du————— (5.1
f—f/é vfﬁ(vl u\/(u—B)(a—-u) )
where
~ )2 2
2a(v)= % +y? % , 2B(w)=1+v?, (5.2)

and v is an unspecified dimensionless parameter. The in-
tegral in (5.1) is elementary and we obtain

A*yR
=1L
J 327¢

We observe here that the result is independent of b and is
proportional to the normalization radius R.

As we have already remarked above, in general, that is,
for b 51 EN, the total probability wy, contains also
contributions from processes which violate the triangle
inequalities. Using numerical calculations we find that
these contributions diverge with R, but less rapidly than
the w?.

Let us now return to Eq. (5.1) from which we can ob-
tain the lifetime 7'* of the decaying particles via the “de-
cay channel” of type (¢) processes. Remembering that
the particle density of our cylindrical states |1K,§> is
E; /(wbr§) for r>>r ., =11|/(b§), we conclude that the
total number of decaying particles within a normalization
cylindrical box of length L and radius R is, in the limit L
and R — oo, approximately equal to

(5.3)

(L,R) E; 2LRE;
brdrdzd ~ 5.4
f rdrdzde wbre ¢ (5.4)

Therefore, the lifetime 79

satisfies

of each decaying particle

1 wiU) Ay
L - , (5.5)
70 TQLRE,S™Y) 647E,

Note that the result again does not depend on the
cosmic-string parameter b.

The factor y that appears in this result can be specified
by considering the Minkowski limit b =1. In this space-
time, because of the momentum conservation in the x-y
plane, only type (#) processes contribute to the total de-
cay probability. Therefore, wp(j)=w{ (j) and conse-
quently the (total) lifetime of the decaying particles is
r=7'"". However, in Minkowski spacetime one can easily
obtain the lifetime by an independent calculation based
on the usual plane-wave states. The value of the lifetime
obtained in this calculation agrees with the one above
provided we set y =2.

A. Localization

Unfortunately, for the type (¢) processes we cannot use
Eq. (2.14) to study their local behavior. The reason is
that the probabilities w'”(k,l,£) and w'"(k,l+1,£) are
infinite, proportional to R, and agree in the limit of
R — w. Therefore it is not clear how their difference,
which appears in Eq. (2.14), is to be taken.

However, returning to Eq. (5.3), we note that the final
result for the total probability w{ is proportional to the
range R of the normalization radius. This is due to the
fact that the presence of the cosmic string is not neces-
sary for the realization of these processes while, on the
other hand, its effect on these processes is expected to de-
crease as one moves away from the string.

However, although for large radial distances the type
(1) process dominate (and therefore tzwg’ ), near the
cosmic string the processes which violate the triangle ine-
qualities are expected to play an important role. Their
radial dependence can be, in principle, roughly derived
with calculations based on Egs. (2.14). Consequently we
expect that decay rates, lifetimes and so on, change
significantly as we approach the cosmic string.

In closing, let us briefly note that a “good” cross-
section definition can not be given in this case. The total
probability wp(p), out of which we must construct the
cross section according to the usual S-matrix scheme,
turns out to be proportional to the volume ( « LR?) since
the (7)-channel processes dominate in an infinite space re-
gion. Therefore only an “average” cross section could be
given, referring only to those (¢) processes that take place
far away from the cosmic string. Thus we have in such a
definition no information for the D processes near the
string where, as we explained above, they are expected to
be quite different from those in the » — « region. There-
fore we realize that a quantity which would describe sat-
isfactorily the D process should be a spatially dependent
one. This quantity however cannot be a cross section
since spacetime dependence does not come out from any
usual S-matrix scheme.
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APPENDIX work not with the u,v variables of Eq. (3.2) but with the 7
and o ones:
Here we present details 'for the calculations of Sec: .IV r=v/u, o:=(1—2u+v?)"?. (A1)
on the high-energy behavior of (a) the total probability
wpc(j) and (b) the pair-creation cross section. (a) In terms of the 7,0 variables, the integral I;(spc) of

In the high-energy regime it is more convenient to Eq. (4.2) is written as
J

( )_2fd f J (1—0o*)coth(w /b)[exp(—2|I|w, /b)+exp(—2|l|w,/b)]
1) ) 0 T o7 (o2 — M) 2A(1+ A)[sinh3(w /b )+ sinX(7 /)]
with

’ (A2)

=[1—7(1—02)]"?. (A3)

The quantities w, w,, and w, are those in Eq. (3.3) but they are now considered to be functions of 7,0 via the inverse
relations of (A1):

u=(1—A)/7, v=(1—A)/T. (A4)

From (A2) it is obvious that for high energies {/(2M ) >>1 the main contribution to I;(spc) comes from small values
of o, that is for 0 ~2M /{=~0. For 0 —0, as long as 7 is not close to one, we have the following limiting values of the
quantities that enter the expression for I;(spc):

— o(1+A,)
A>Ap=V1-7, w——
Ao
(A5)
oT oT
w1—> w2—>

[21—7(1—An])% [21+7(1—A]"2
Values of 7 close to unity do not contribute in I;(spc) since they make the exponentials in (A2) tend to zero while the
rest of the integrand of I;(spc) (that is the integrand apart from the exponentials) is integrable at 7— 1. In fact, the
main contribution to I;(spc) comes from values 7—0. In this limit we conclude from (AS5) that w, =~w,~o =2M /¢.
Now, because of Eq. (A5), the exponents in (A2) are proportional to —|/|o~—2|I|M /¢ and therefore the integral
I)(spc), for |1| >>&/(2M), falls off exponentially with increasing |/|.
On the other hand, for |I| <<{/(2M) each of the exponentials in (A2) is, to a good approximation, equal to one.
Therefore in this case the integral I,(spc) is approximately equal to the value of I; _y(spc):

f f AY1+A,) 2 A6)
w1/ G =AM D) o1+ A+ b2k sind (/b))

SPC)~

It is obvious from (A6) that the 7 and o integrations separate whenever one of the two terms in the square brackets of
(A6) dominates over the other. In particular if o ~(£/2M)>>[1/b|sin(/b)|], then we can neglect the term propor-
tional to o2 in (A6). The integral then simplifies to

4b dr 1 do b
Iy(spc)= = (A7)
07RC 51n2(77'/b)§2f (1+V1—72) fZM/§02(02—4M2§"2)1/2 3IM?sin¥(7/b)

For GUT cosmic strings where (1—b)<<1 the Eq. (A7) is valid for the ultrahigh-energy region
(£/2M)>>1/7(1—b). Because for GUT cosmic strings (1—b )~ ! is several orders of magnitude larger than one, one
can furthermore consider the high-energy regime 1 <<(£/2M) <<[1/7(1—b)]. In this case the term < o? in the square
brackets of Eq. (A6) dominates over the term «<sin*(7/b). Thus the I,(spc) simplifies in this case to

4 1—7 1 do g
Io(spc)=— | d : A
R X Ta+VI=2r ol —aM)” T 10sM? ~

The first correction to the I;(spc) for /70 can also be obtained analytically. By expanding the exponentials of (A2) in
a Taylor series we see that in the 0 — 0 limit the quantity in the square brackets of the numerator of Eq. (A2) is
20 |1(14+4y)
bA,

+0(1%?) . (A9)

Therefore

Ii(spc)=Io(spc)— 1181 (spc) +0O(1%0?) (A10)
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with

4b ,i i Ag(1+A,) !
S (spe)=~—+ | dT d . All
e g2 fo sz/; 7 (0 —aM2E ) (a2 (1+ Ay + b7 A2 sinX(7/b)] At

Similar to the calculations of (A7) and (A8) above, we obtain in the ultrahigh-energy limit

81 (spe)=—— T . Al2
PCT sin2(m/b)ME (Al2)
In the case where 1 <<(£/2M)<<(1—b)" ! we find
8I(s ):_‘”Q_ i
Spc 6OM > (A13)

(b) In the calculations for the pair-creation cross section we must work out the expression 3;°* _I,(spc). Inter-
changing the summation and integration and performing the summation, we are left with an expression which is given
by the I;(spc) of Eq. (A2) with the quantity between the square brackets of the numerator changed to

exp(w,/b)  explw,/b)
sinh(w; /b)  sinh(w, /b)

—2. (A14)

In the high-energy limit where 0 —0, the expression in (A 14) goes to 2b /0. Therefore for { >>2M we obtain

AX1+Ay) 2

S L) =L [lar [ 4o (A15)
LR e Jo T anse T g3 ot —aMPE ) 014+ Ay 2+ b2A2sinX(w/b)]

f

. o _ ()
In the ultrahigh-energy limit we have f /4 cosz((%:), dx =2#B(u+1,u+1), Re(n)>—1
+ oo sz; 0 cosTHTUx
> Ii(spe)= — 3 - (A16)

I=—o 24sin*(m/b)M while for the o integrals the change of variable
For 1 <<(£/2M ) <<(1—b)" ! we find y=VEa?/4M*—1 with y€(0,V(£*/4m?)—1— )
o 3 and the relations (3.252.3) and (3.249.1) of Ref. [16]:

S Iispe)=—To (A17)
= TR 2040M [ dy _ (=2 a1
0o (pi+c)" T2 2+ 3" ¢’

In deriving Egs. (A7), (A8), (A12), (A13), (A16), and
(A17) we have used for the 7 integrals the change of vari- f = dy __ (@2n—3)x )
able 7=sinx and the relation (3.624.4) of Ref. [16], 0o (pr+cH"  22n—2)Mc !
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